MPI Network Performance

- Scalability
- Latency
- Bandwidth

Example $a \ b$ e $a \cdot e + b \cdot f$ CPU 1 $c \ d$ f $c \cdot e + d \cdot f$ CPU 2

 $M\vec{b} = \vec{C}$

Many numerical methods use matrix calculation and can be parallelized. •BLAS -> ATLAS -> Pthread

The Center for Advanced Computing

The University of Michigan

Parallel Approaches

- Posix Threads
 - Well understood
 - Shared Memory
 - Simple Mutexs
 - Not Cheap

Parallel Approaches

Host1

- MPI (Message Passing Interface)
 - Shared or distributed Memory
 - Well supported
 - Portable
 - Explicit Data
 Passing

The Networks

- Myrinet 2000
 - 2Gb/s
 - Uses GM driver
- Ethernet
 - 1Gb/s
 - Jumbo Frames

Ethernet

- Cheap
- Reliable
- Jumbo Frames
- Slow
- TCP/IP

Myrinet

- Fast (For Now)
- No TCP/IP
- Well Supported

message size

Cpu Scaling

Recommendations

- Embarrassingly Parallel
 - MCNP5
 - Seti@home
- Tightly Coupled
 - Boundary Condition
 - HPL

Checklist

- Problem Run Time
- Problem Nature
- Cost
- Shared System
- Do you NEED Shared Memory?

Who are we?

- 584 Nodes (1,168 CPU's)
- 1,244 GB RAM
- 11 TB Shared Disk
- 30 TB Scratch
- 0.58 Tb/s Network
- 4 Clusters 3
 Platforms 2 OS's

The Center for Advanced Computing The University of Michigan

) ercomon

ן ֶ

A COM